

Oregon Army National Guard Camp Rilea Armed Forces Training Center

Ocean Renewable Energy Feasibility Study

LTC Ken Safe, US Army National Guard, PE Rick Williams, Captain, USN (Ret), PMP, NPDP

- Introductions
- Background
- Ocean Energy Concept
- Feasibility Study
- Future

Wave Energy in Oregon Background

- Oregon has wave resources, grid and load close to shore, and a mature marine industry
 - Need for renewable energy and jobs
 - Need for a grid-connected test site
- Interest from Clatsop County
- Potential for Army Net Zero Program
- Camp Rilea and submarine cable are existing ocean uses
- Oregon Army National Guard manages facilities and has professional engineering, planning and environmental compliance staff

US Army Energy Program Army Net Zero

- Appropriately manage our natural resources
- Addresses energy security and sustainability
- Goal of net zero pilot installations
 - Net Zero Water
 - Net Zero Energy
 - Net Zero Waste

- Fort Oregon selected for Net Zero Energy Pilot
 - 20MW: estimate for Oregon Army National Guard in
 - 40MW: estimate for Oregon Army and Air Force National Guard
- Army goals to achieve total Net Zero by 2020

International Development Marine Energy

- **United Kingdom**
 - EMEC*
 - WaveHub*
 - Galway Bay, Irish Marine Institute
- Europe •
 - DanWEC (Denmark), SEM-REV (France), Agucadoura* (Portugal)
- Australia
 - OceanLinx
- **United States**
 - US National Marine Renewable Energy Centers
 - Hawaii Kaneohe Marine Corps Base Hawai'i*
 - Northwest (Oregon, Washington)
 - Southeast (Florida)
- Grid Connected site.

OE Buoy Deployed in Galway Bay Courtesy of OE Buoy

International Progress Marine Energy

- European Marine Energy Centre (EMEC)
- Founded in 2003
 - Crown Estate
- Full Grid Connection
 - 11 kV
 - 5 MW
- Current Capabilities
 - 5 MEC test berths
 - 7 Tidal test berths
 - Multiple "nursery" berths
- Currently all berths under lease

Camp Rilea Armed Forces Training Center Clatsop County, Oregon

Depth in meters

Wave Measurement near Camp Rilea Clatsop County, Oregon

Unique arrangement of wave measurement capabilities off Clatsop County and Mouth of Columbia River

Wave Resource near Camp Rilea Clatsop County, Oregon

J

Existing Electrical Distribution Camp Rilea Clatsop County, Oregon

- Camp Rilea is a national security site and the disaster response site for the North Coast, needs multiple power sources for disaster resilience
- Camp Rilea has policy of co-use and co-location to avoid encroachment on live fire training mission
 - Electrical distribution system close to shore
 - Connects to local utility grid at Hwy 101
 - Willing to consider test site
 - Willing to consider cable landings
 - Professional staff
 - Culture of environmental compliance

Camp Rilea Armed Forces Training Center Clatsop County, Oregon

harts.noaa.gov/OnLineViewer/18520.shtml

C 🛛 🚰 - NOAA chart Astoria to '

Camp Rilea Proposed Danger Zone Clatsop County, Oregon

Camp Rilea Ocean Renewable Energy Project Site Concept

- Concept: Evaluate Viability of Ocean Energy
- 1. Generate renewable electricity with waves
- 2. Evaluate combination of wave-wind hybrid and offshore wind
- 3. Energy Security/Net Zero/Disaster Resilience

Camp Rilea Ocean Renewable Energy Project Site Concept

Elements of Ocean Renewable Energy Sites

- 1. Marine Energy Converters (MECs)
 - Multiple designs
 - Varying technology readiness levels (TRLs)
- 2. Offshore Site Infrastructure
 - Deep
 - Mid
 - Shallow

3. Shore Site Infrastructure + Interface to Grid

Camp Rilea Ocean Renewable Energy Project Site Concept

- Camp Rilea's mission is training and needs dependable power from multiple sources.
 - Fort Oregon represents load from all Oregon Guard sites
 - North coast communities will benefit from power generation and jobs and enhanced ability to support emergency service response at the Camp
 - Research hardening for disaster resilience

Camp Rilea Ocean Renewable Energy System Block Diagram

Marine Energy Converters	Sea-Based Shore-Based Electrical Infrastructure Connect Functional task areas			
Design & Planning	Resource adaptation, conceptual design, preliminary design, prototyping, detailed design, implementation planning			
Regulatory & Permitting	Site evaluation and selection, environmental analysis, outreach, and agency interaction			
Implementation, Operations and Maintenance	Procurement, fabrication, logistics, installation, commissioning, project operations, maintenance, monitoring, adaptive management, and decommissioning			
Financial & Business Management	Business planning, finance, project management, cost accounting and control			
Marine Energy Converters (MECs)	MEC technology development, installation planning, device operation and maintenance.			

Camp Rilea Ocean Renewable Energy Conceptual Deep Project Site (OCS)

harts.noaa.gov/OnLineViewer/18520.shtml

C 👌 - NOAA chart Astoria to '

Camp Rilea Ocean Renewable Energy Conceptual Deep & Mid Project Sites

harts.noaa.gov/OnLineViewer/18520.shtml

C 👌 🖓 - NOAA chart Astoria to '

Camp Rilea Ocean Renewable Energy Conceptual Deep/Mid/Shallow Project Sites

harts.noaa.gov/OnLineViewer/18520.shtml

C 👌 NOAA chart Astoria to '

Camp Rilea Ocean Renewable Energy Marine Energy Converters

Marine Energy Converter (MEC) Types

- Point Absorber Vertical Motion
 - PowerBuoy[®], CPT, Wavebob[™]
- Attenuator Longitudinal Motion
 - Pelamis, Anaconda
- Focusing Directing Waves to Center Location
 - Wave Dragon
 - Bottom Mounted
 - M3, Oyster[®], Archimedes Waveswing[™],
- Wind/Wave Combination
 - Floating Power Plant
- Evolving industry

Camp Rilea Ocean Renewable Energy Marine Energy Converters

Camp Rilea Ocean Renewable Energy Draft Proposed Concept

- If project proceeds, one possible design approach is:
- Concept of multiple berths in different water depths:
 - Most for National Guard, some for NNMREC
 - Construction of first site in 2016-2018?
- Initially single device operation, conservative mooring
 - Array operation after technology proven
 - Demonstrate reliability of power generation
- Community comment and support is needed with feedback and coordination from early stage
 - Start small, be conservative
 - Additional build-out in 10+ years if needed and after community and industry outreach

Camp Rilea Ocean Renewable Energy Draft Proposed Concept

• If project proceeds, one possible timeline is:

Current Activity

Feasibility Study Winter 2011/Spring 2012 Conceptual Design 2012 - 2013 (?) Preliminary Design 2013 – 2014 (?)

Detailed Design 2014 - 2016 (?)

Camp Rilea Ocean Renewable Energy Current Activities

- Feasibility Study
 - Electrical & Marine Infrastructure
 - Wave Energy Resource Assessment
 - Regulatory Framework
 - Business/Financial Analysis
- Community Outreach and Consultation
- Agency Outreach and Consultation

Camp Rilea Ocean Renewable Energy Proposed Coordination

- If project proceeds, opportunities work with community:
- Cooperation with Clatsop County
- Cooperation with Fishing Industry and OFCC
- Cooperation with NNMREC and OSU
- Cooperation with Clatsop Community College & Job Corps
 - Marine and Environmental Research and Training Station (MERTS)
 - Tongue Point Job Corps Seamanship Training Program
- Cooperation with Local, State and Federal Agencies
- Cooperation with Ocean Energy Companies in Oregon
- Others

Camp Rilea Ocean Renewable Energy Concept Development Stages

• If project proceeds, activities in the timeline include:

Current Activity

Feasibility Study Winter 2011/Spring 20	12 Conceptual Design 2012 - 2013 (?)	Preliminary Design 2013-2014 (?)	Detailed Design 2014-2016 (?)
 Develop Top-Level Project Requirements Regulatory Framework Resource Assessment Marine/Electrical Infrastructure Community Outreach Agency Introduction 	 Community Outreach Agency Coordination Environmental Block Diagrams Interfaces Concept of Operations Electrical Integration In-Water Infrastructure Shore Infrastructure 	 Community Outreach Agency Coordination Environmental Permitting Interfaces Concept of Operations Electrical Integration In-Water Infrastructure Shore Infrastructure 	 Community Outreach Permitting Environmental Interfaces Concept of Operations Electrical Integration In-Water Infrastructure Shore Infrastructure Installation Procedures